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Abstract

The vast majority of modern electronic music played by DJs today can be cate-

gorised into one of several distinct sub-genres, or styles, for example; House, Electro,

Techno or Jungle. Each of these styles can be almost scientifically defined by its

rhythmic profile, which includes, amongst other characteristics tempo, meter, and

a range of more expressive features. A large majority of work into audio classi-

fication and identification focuses on analysing tonal and textural elements, with

rhythmic representations merely an afterthought, but effective automated rhythm

fingerprinting and matching software could easily find application in a DJs digital

toolbox. Most previous work that has taken a rhythm-oriented approach to music

information retrieval (MIR) has focussed on classifying standard and Latin ballroom

dance works, with some areas of interest only recently having been studied in the

context of ’EDM’, a far less rhythmically diverse genre.

This project explores the performance of a content-based similarity system that

makes use of rhythmic feature descriptors to provide suggestions of perceptually

similar pieces of music to a query piece. The implementation utilises a simple met-

rical profile to locate salient patterns in a piece of music and extracts the patterns to

form a type of audio fingerprinting. Evaluation of the investigation on an in-house

dataset found that these patterns can be compared efficiently with one another to

give meaningful rhythmic suggestions from a library of electronic music of varying

styles, although some user correction is required for the system to be fully effective.

A simple interface is presented to facilitate these corrections.
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1 Introduction

Although we do not often realise it, whenever we hear a piece of music we perform some

degree of classification on the audio, based on features present in the recording or perfor-

mance. These features generally fall into one of two categories - tonal or rhythmic. For

any piece of audio represented digitally, signal processing techniques enable automatic

extraction of a wide range of features belonging to both of these categories. By applying

distance measures to dominant features in individual works, it is possible to group tracks

that have similar characteristics, and therefore, in theory sound similar.

The process described above has clear utility in a content-based analysis and recommender

system. With such a broad range of features that can possibly be extracted, the key to a

meaningful analysis procedure lies in determining which features contribute most to the

auditory profile of a track, i.e. the way in which it is perceived by the human ear, and how

these perceptions contribute to defining the genre boundaries we recognise. In the domain

considered here - modern electronic dance music - rhythmic characteristics such as tempo

and outer/inner-meter are considered by many to be sufficiently indicative of sub-genre

that they can be used to distinguish between most cases. The aim is therefore to extract

and analyse rhythmic features from songs and use the vectors obtained to classify and

rank collections of music.

It is important to remember that there will inevitably be some contention amongst lis-

teners as to which specific sub-genre certain tracks belong to. This project is not aiming

to resolve such disputes, but rather will provide a means to discover rhythmically similar

tracks in an existing collection. With that in mind, the primary goals of this project are

as follows:

1. To investigate the extent to which extraction and analysis of rhythmic feature in-

dicators can successfully classify a range of modern electronic dance music pieces

into their relatively broad sub-genres (Electro, Footwork, House, Jungle, Techno,

UK Garage)

2. To build a scalable tool that will recommend rhythmically similar tracks from an

existing library

The remainder of this project report proceeds as follows: Chapter 2 discusses the back-

ground reading that contributed to important decisions throughout the project. Chapter
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3 outlines the approach taken to software development and the important considerations

in this aspect. Chapter 4 describes in full the implementation, that is, the specific tech-

niques that were used to solve many of the problems introduced in ch. 2. Chapter 5 sets

out the strategy used for evaluation before presenting the results obtained, and chapter

6 discusses in detail the implications of the results. Finally, Chapter 7 reflects on the

findings and offers some areas for future development.
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2 Background Research

2.1 Rhythm Perception

In order to design a system that can accurately describe music by rhythm, it is first nec-

essary to understand the way in which the human ear perceives rhythm. Honing discusses

in (11) how the perception of a performed rhythm generally derives both an overarching

rhythmic category (tempo, meter) as well as “expressive timing”, which refers to more

stylistic characteristics. Experiments carried out in 1973 (9) explored the multidimen-

sional nature of rhythmic characteristics, concluding that, amongst others, “rapidity”,

“uniformity-variation” and “forward movement” are all defining factors in a piece of

music‘s rhythmic profile. Even earlier than this, Cooper & Meyer (3) wrote that “to

experience rhythm is to group separate sounds into structured patterns”, and in doing so

succinctly summarised one of the trickiest problems facing many music analysis systems.

2.2 Automated Feature Extraction

Audio feature extraction in general has been explored in several contexts, most famously

by Shazam in their largely-successful efforts to automatically identify tracks based on

short, user-recorded snippets of audio (23). Genre-based classification by a variety of

features has been studied in (22) and (13) with good degrees of success, although in both

cases the dataset analysed included music from a much wider set of genres. In the latter,

McKinney & Breebart found through thorough testing that “a feature set based on a

model of auditory perception out-performs other current standard feature sets”, referring

in this case to auditory filter bank models. They also noted that “temporal variations of

features are important for classification” regardless of the feature set used.

2.3 Features for Rhythm Analysis

Automatic genre classification by rhythmic analysis alone has not been studied in as much

depth. In 2001, Foote & Uchihashi introduced a novel approach of computationally rep-

resenting rhythmic features in music based on self-similarity, which they called the beat

spectrum (8). The algorithms developed here were able to “reveal both the tempo and

the relative strength of particular beats”. Dixon et. al expanded on this approach in (6)

by identifying the most prominent bar-length rhythmic patterns in each piece, and using

these patterns as the bases for inter-track distance measures. In this study, the rhythmic

profile of a pattern was represented by “the amplitude envelope of the signal between the
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start and end points of the bar”, and was analysed in conjunction with tempo and other

derived features to achieve a 96% classification success rate. Additionally, they noted

that extracting patterns from specific frequency bands could potentially yield improved

results; this idea is explored in this project.

The work of Chew et. al a year later (2) had the same goal of distinguishing between pieces

with the same tempo and outer-meter, but took an alternative approach to examining

inner-meter. By assigning each note with a metric and spectral weight (14) corresponding

to its significance in a local meter, the system was able to classify Standard and Latin

ballroom works with around 70% accuracy.

There have been some recent developments in the use of features extracted from recog-

nised rhythmic patterns. In (20), Smith introduced a new model of rhythmic profile

entitled the Metrical Profile, which represents high-level features such as syncopation and

is computed over a pre-determined prominent pattern. The model is defined with the

intention of closer modelling human perception of a track whilst maintaining its viability

as the basis for similarity measures. Their work was able to classify the Standard and

Latin Ballroom dataset with 67% accuracy, although the feature vector was very high in

dimensionality.

In terms of technologies available, work published in 2007 presents a set of entirely modular

functions written in Matlab and designed purely for the extraction of music features from

audio (12). Lartillot and Toiviainens MIRToolbox can extract with startlingly-simple

syntax a comprehensive range of musical features, including pulsation and periodicity,

making the toolbox ideal for this study.

2.4 Tempo Estimation

Settling on an appropriate and accurate tempo estimation algorithm proved much more

time-consuming than expected. Exact tempo estimation is far from a solved problem,

and a thorough analysis of approaches in (26) shows that the best-performing algo-

rithm can achieve 91% accuracy, with most achieving somewhere between 50 and 70%.

The MIRToolbox implementation, mirtempo, was found to produce 75% accurate results,

roughly consistent with the findings in this project.
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The study in (26) concludes that due to the nature of the most common errors (double

error and 4/3 error), heuristic approaches to combining methods can achieve significantly

higher accuracy.

2.5 Beat Tracking & Segmentation

The problem of accurately tracking beats and recognising phases in a piece of music is

central to the study of content-based analysis. The performance of many integral algo-

rithms and procedures is directly affected by the accuracy with which the system has

segmented a track, a process which relies on correct knowledge of bar phases (start-times)

and periods (durations).

In particular, as rhythmic feature analysis tends to focus on short repeating patterns (18),

the desire to recognise and extract salient patterns comes to the fore. If the extracted

pattern does not correspond to the pattern as a human perceives it, then any feature com-

puted from the pattern will not be descriptive of the track in a wider context, regardless

of its prominence in the track. To clarify this, consider the diagram below consisting of

two identical rhythmic patterns that have been delimited differently.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

low 1 - - - - - - - - - 1 - - - - -

mid - - - - 1 - - - - - - - 1 - - -

high 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

low - 1 - - - - - - - - - 1 - - - -

mid - - - - - 1 - - - - - - - 1 - -

high - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Figure 1: Columns correspond to measures in a bar. A value of 1 in a position indicates

a significant rhythmic event at that point.

The two rhythms displayed in figure 1 can be recognised as identical to each other except

for a rightwards shift of 1/16th note, or 1 semiquaver. This kind of error can result from

imperfect segmentation, and can present a significant issue for analysis algorithms, as
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these rhythms would be treated as dissimilar.

Although an algorithm can usually determine to an acceptable degree of accuracy the

location of beats in a piece, it is far more complicated to identify algorithmically which of

these is a downbeat and marks the start of a bar - a task which is perceptually straight-

forward for most humans.

In a 2013 analysis of ’EDM’ music, Rocha et. al (19) combined initial downbeat detection

with timbre-based novelty measures and some musically informed rules to achieve up to

51% segmentation accuracy (within 0.5s) on a purpose-built EDM dataset. Downbeat

detection in this case consisted of first applying a band-pass filter to isolate frequencies

commonly containing the kick drum, and then searching for peaks in an onset detection

curve centered around the first point of high response of an RMS computation.

Panteli had some success in (16) by using the segmentation method introduced in (19) to

divide a signal into meaningful regions, before applying a downbeat detection algorithm

based somewhat on musically informed rules. The algorithm achieved 51% accuracy at

locating the downbeats within 50ms - suggesting about half of the tracks could be sus-

ceptible to incorrect bar phase information. In their case, the issue was mitigated as the

system calculated similarity based on a number of features, crucially including a period-

icity measure computed over an arbitrary length section of the track.

In (6), beat detection as a prerequisite to segmentation was achieved with the help of

BeatRoot (5; 4), a system that algorithmically estimates beat positions and periodici-

ties in a track and is supported by an interface to allow for user-corrected values. Their

beat-tracking algorithm works by measuring frequency of occurrence of durations between

various note event onsets and hypothetically comparing sequences of these onset events

to an existing tempo estimation. Combinations of note events that are predictable and

reoccur according to some multiple of the tempo estimation are grouped together to form

a rhythmic structure, from which the beats can be derived.

To summarise research into this issue, even a system that is able to perfectly label the

location of beats in a track is unlikely to be capable of correctly identifying the metrical

boundaries (bars) that encapsulate the prominent rhythm. Any system reliant on wholly

accurate representative rhythmic patterns must therefore include some way for a user to
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correct the system’s estimations.

2.6 Measuring Similarity

The final aspect to consider then is how to use the detected features to identify rhyth-

mically similar songs. The field of content-based music retrieval offers a good amount of

research on which to base an approach to this problem. (24) presents a fairly rudimentary

approach to querying a database through similarity features, but falls short of analysing

in any real depth the rhythmic characteristics of tracks.

Pampalk et. al take a more graphical approach in (15) by using Self-Organising Maps to

cluster tracks into “Islands of Music” that theoretically resemble genres. The approach

taken here relies more heavily on a detailed examination of rhythmic features, and in fact

contributed to some of some of the algorithms implemented in the MIRToolbox. The

weather maps outputted by this system provide a convenient way in which to evaluate

the performance of the classifier that is not reliant on specific sub-genre labels that can

cause contention.

An in-depth comparison of alternative rhythmic similarity measures carried out by Tou-

ssaint (21) made use of phylogenetic trees to evaluate the efficacy of common distance

measures at rhythmic categorisation in a variety of vector spaces. The intuition behind

this approach is that a good similarity measure will provide an insight into “the struc-

tural inter-relationships that exist within families of rhythms”, which contrasts to the

usual technique of evaluation with reference to human perception. Each phylogenetic tree

generated by a distance measure for a family of rhythms was examined for characteristics

such as goodness of fit, clustering, and any ancestral structure, with chronotonic and edit

distance emerging as the best overall rhythmic similarity measures.

Toussaint also found that the Hamming distance performed very well when classifying

binary rhythms. The Hamming distance has its roots in information theory and error

checking, but can be computed between any two equal-length binary vectors to denote

the difference between them, i.e. the percentage of elements of vector A that are not the

same in vector B.

The Hamming distance as described above is naturally suited to rhythm comparison, but
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has the drawback of not measuring the magnitude of any mismatches between vectors,

as it considers each vector element entirely separately from one another. The Leven-

shtein, or edit distance is a variation on Hamming designed to ameliorate this flaw, by

measuring distance as the amount of operations required to convert vector A to vector B,

where the operations permitted also include left and right shifts of elements in each vector.
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3 Approach

This section describes the most significant decisions made throughout the development

process and how they have been influenced by the goals and requirements of the project.

Also presented is an overview of the design of key system components.

The original intent of this project defined two distinct goals - to explore the capabilities of

algorithmically generated rhythmic feature descriptors, and to implement the developed

feature within a content-based suggestions system supported by an intuitive interface.

With that in mind, the following requirements are identified.

Functional Requirements

1. A user must be able to select tracks from their file system for analysis

2. The system must support individual and batch analysis of files

3. The interface must provide straightforward options for a user to manually correct

any analysis files

4. The interface must offer some visualisation of analysis files to the user

5. The user must be able to specify a track and view suggestions of similar tracks

6. The system should allow for specification of weights for the three frequency bands

when computing similarities

Non-Functional Requirements

1. The system should be scalable up to a library of several hundred tracks

2. The system should store all analysis files on disk to facilitate an interactive and

responsive interface

3. Analysis files stored by the system should be very small compared to the the original

audio files
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3.1 System Architecture

The main challenges associated with implementing the content-based analysis system

as an interactive and intuitive piece of software mainly concern managing an optimal

execution flow throughout analysis. When dealing with audio data, generally large in size

compared to text or image data, it is vital to consider the time and space requirements

that come with processing and storing analysis files. With this in mind, some key design

decisions are outlined below.

3.1.1 Track Data

All data and files associated with any given track are stored in a TrackData object.

Class instances are created with a path to the audio file to be analysed, from which the

constructor generates a track name, used for identification purposes, and creates an info

directory if it doesn’t already exist. If a file with this name has been analysed before,

the constructor finds the analysis files and loads their data from disk. Each analysis file

is by nature several magnitudes smaller in size than the original audio file, allowing the

system to hold all files in memory during use. The properties of a TrackData object can

be categorised based on their purpose:

Basic Properties: TrackName, OriginalPath, PathToInfoDir

Feature Properties: Tempo, TempoCands, BestBar, BestBarLoc, Amplitude,

AttackLength_s

Temporary Properties: SimilarTracks, TrackWaveform

Dependant Properties: TempoExists, BestBarExists, AmplitudeExists

The temporary properties are described as such because they are computed on demand

at run-time, and are not saved to disk storage. Lists of similar tracks are generated dy-

namically and displayed immediately, depending on user-specified parameters, so there is

no need to store these. The waveform object is not stored due to its size and is created

only when necessary, as depicted in section 3.1.2.

The class facilitates updating and accessing of analysis files to and from persistent storage

through its methods updateDiskData and getFromDisk, as well as simple methods to

check if any given analysis file exists. This functionality increases flexibility of usage of

the class outside of the global context, for example providing a framework for carrying

out efficient evaluation through script usage. All TrackData objects are held in a global
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TrackArray instance, which is created at start-up time from a persistently stored list of

file-paths and is accessed by the GUI-governing class.

3.1.2 Flow of Execution

Amongst other features, the interface - illustrated in section 3.2 - provides a straightfor-

ward means for a user to select files for analysis, perform individual or batch analysis,

correct any errors in the data generated during analysis, and of course display similar track

suggestions. The analysis processes are contained in functions separate to the GUI class

which are called hierarchically starting from the callback function for the corresponding

button. Flow of execution for a full analysis of a track is shown in figure 2.

A handful of global variables are maintained throughout execution to ensure all stand-

alone functions have access to any required information. These include an ActiveTrack

object that determines which track’s data is passed to the analysis functions and displayed

on the interface, as well as absolute paths to important disk locations, for example that

of the file list . There are also a number of files containing helper functions with re-usable

or bulky code that have been separated from the GUI class.

One of the most computationally expensive steps in this process is computing the wave-

form object, which is achieved using miraudio. The full waveform is required for both

tempo estimation and bar extraction, so for efficiency purposes we do not regenerate the

waveform before each of these. This is facilitated by a TrackWaveform property of the

TrackData class, which is instantiated whenever features need to be computed, and de-

stroyed (set to empty) immediately after. Computing the amplitude envelope from which

the eventual feature is extracted does not require the entire track waveform, only a wave-

form for the “best bar” generated during pattern extraction.
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Figure 2: Flow chart depicting execution flow required to fully analyse a track

Another major advantage of this approach to execution flow is granted by separation of the

complex audio processing operations from the main control flow. This allows for straight-

forward interchanging of different analysis algorithms, requiring very few alterations to

existing code.
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3.2 Interface

Developed alongside the underlying feature extraction and analysis framework, the graph-

ical user interface not only facilitates the process but can drastically improve the results

produced. A number of controls on the interface allow a user to correct crucial parameters

and data that the automated system has miscalculated.

Matlab’s GUIDE framework houses the interface, meaning the front and the back-end

components run in the same environment, which is hugely advantageous for a project like

this.

Figure 3: Graphical User Interface for the system. 1 is a list of files tracked by the system.

2 displays track data for the selected track, 3 allows a user to edit it. 4 displays a list of

similar tracks. 5 displays a preview of the feature vector, mainly included for evaluation

purposes

Side-by-side development of the front and back-end components enabled an incremental

approach to designing and refining the interface features and layout. Design decisions

were influenced directly by commonly required operations in a typical work-flow, and as

a result the interface design closely reflected a verified use case. This use case is described

below, with reference to the labelled components:
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• User clicks ’Select Files’ and browses their file system for tracks to analyse. Infor-

mation regarding chosen files is displayed in 1, displaying track name, path and any

analysis files already generated

• User selects a file in 1 and clicks “Analyse Selected Track”. The back-end scripts

compute any missing analyses for the track

• User clicks “Load Selected Track” and 2 updates to show the bar-length amplitude

envelope for the track

• Track information and parameters can be adjusted using the controls in 3. In-

cludes visual and aural feedback - user can play the audio clip and visualise the

corresponding feature vector (displayed in 5)

• Once satisfied with the positioning and length of the representative bar, the user can

generate similarities to be displayed in 4. The weighting applied to each frequency

band is determined by the selections in the left-most button group of 3
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4 Implementation

This section describes in detail the resultant software, and the technologies and techniques

used to implement the required feature extraction operations. First we present a short

summary followed by a description of the key analysis process, corresponding to the blue

boxes in 3.1.2. Next we discuss specificities of the similarity procedure, before concluding

with a closer look at the user interface.

4.1 Summary

The entire application is written in Matlab, and as initially planned, MIRToolbox forms

the foundations of the system. Several important processes begin by extracting MIR-

Toolbox objects from music files, but in all cases other signal and feature processing is

required. The mir objects were found to be unnecessarily cumbersome in certain cir-

cumstances, as well as occasionally restrictive. As a result, it was regularly necessary

to extract the raw data from these objects for more nuanced analysis and for persistent

storage, whilst keeping in mind performance requirements.

The development process differed slightly from the planned process in that the front-

end interface was produced alongside the underlying audio processing architecture. This

change was made to facilitate incremental testing and tweaking to the system parameters,

whilst ensuring a fully-functional system was never more than a few lines of code away.

4.2 Tempo

The approach taken to tempo estimation in this project reflects conclusions made in (26)

that suggest the possibility of improvements in accuracy through application of a heuris-

tic correction function. The process_tempo function in this implementation takes an

instance of TrackData (3.1.1) and computes 2 separate tempo estimations before using

the result of one to select the most appropriate candidate from the result of the other.

The first procedure is mirtempo which is computationally expensive but produces very

precise results. The default configuration for this algorithm uses a well-established ap-

proach of measuring autocorrelation of the onset detection curve to detect periodicities,

and produces 3 candidate tempos. Analysis of its output (section 5.2) reveals that ambi-

guities in rhythmic interpretation cause a number of tempo estimations to be erroneous,
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as the algorithm chooses incorrect periodic groupings of onsets as being definitive.

The second algorithm is that introduced by Ellis in (7) which utilises dynamic program-

ming techniques to compare sets of hypothetical beat times to an estimated global tempo.

This implementation is far more efficient than mirtempo and produces two output can-

didate tempos that are accurate in a different way to mirtempo. The analysis of this

algorithm, presented in section 5.2, corroborates the creator’s own evaluation in demon-

strating poor results when tested with a low acceptable margin of error, but good per-

formance when the accepted tempo range is increased. This is to say that the algorithm

generates tempo estimations that are usually within the correct region, but are rarely

precisely accurate.

The final tempo estimation for a track is selected by comparing each pair of candidates

from mirtempo and Ellis’. A track’s tempo is chosen as the candidate from mirtempo

that has the minimum distance to either one of the Ellis suggestions. The two tempo

candidates produced by Ellis are in almost all cases at a ratio of 1:2 to each other (e.g.

65 and 130BPM), so the correction process should theoretically find a match regardless

of the scaling decided upon by mirtempo. To ensure consistency across tracks, any tempo

below 100BPM is doubled.

The analysis steps that follow tempo estimation require very precise estimations to gener-

ate truly meaningful patterns and features. The results from Ellis’ algorithm are generally

too imprecise and the results from mirtempo are too often wholly inaccurate to be used

for these purposes. The “educated guess” principle applied here helps to correct many of

those issues algorithmically.

4.3 Pattern Extraction & Feature Descriptor

A feature vector based on bar-length amplitude envelope windows forms the core of the

investigation, and is used centrally in both the pattern extraction process and the content-

based retrieval function.

The entry point for the pattern extraction procedure is the function process_bestbar,

which takes a TrackData object as input. This function then calls subroutines for down-

beat detection, segmentation, and feature extraction, all of which require only raw numeric
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audio data.

The inspiration for this method of extracting rhythms is partly derived from (6), which

used an amplitude envelope extracted from a bar-length pattern to represent each piece.

The exact approach taken in this project however, differs slightly at each stage and is

described below.

4.3.1 Segmentation

Before individual bars can be analysed and grouped, it it necessary to determine the start

and end points of each bar. Accurate performance of the segmentation process relies

entirely on the accuracy of 2 pieces of information about a track: its tempo (section 4.2)

and the location in time of the first downbeat.

The method of computing downbeat locations is based largely on that introduced in (19).

The audio input is analysed chronologically in 5-second windows, at each time applying

a low-pass filter to the signal before computing the global-energy (RMS) in that low-

frequency window. If the RMS response value exceeds a certain threshold, the window

is deemed to contain a kick-drum. An onset detection curve is then computed for the

window, and the location of the first kick-drum is determined as being the first point with

an onset value above a threshold. The onset curve is also utilised at this stage to compute

a value equal to the length of the kick-drum attack phase, which is stored persistently.

Storing this variable for each track is vital to ensure that the positions of low frequency

note events are correctly interpreted by the feature vector creator function.

Once an appropriate downbeat has been chosen, the locations in time of all bars in a piece

are estimated by iteratively adding a bar-length - computed from the track’s tempo - to

the start location of each previous bar, beginning of course at the downbeat. A numerical

array of bar start-times can then be used as input to the mirsegment algorithm.

In addition to the pre-computed track information, this approach relies on two main

assumptions -

1. That the first instance of strong low-frequency energy in a track corresponds to the

perceived first beat the bar.
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2. That the quantised nature of electronically-produced music means each bar is ex-

actly evenly-spaced and of equal length.

A more sophisticated approach, for example that in (6) of searching algorithmically for

the exact location of each bar-start time within an expected region, could be explored,

but would be unlikely to yield any improvement in performance for the dataset in question.

Similar to Dixon’s approach, the bar-finding process relies on some user-correction to

produce meaningful results. Once the algorithm’s estimations have been made, a user

can correct the bar-start locations with small adjustments made in either direction, or by

entering an entirely new start time. Further information on these options is presented in

section 4.5.

4.3.2 Pattern Extraction

Once the waveform has been segmented, the differentiated, half-wave rectified amplitude

envelope is computed over three auditory channels for each segment, using a correctly con-

figured mirenvelope function. This envelope gives precise local descriptions of increases

of energy produced in each channel, and is therefore ideal for indicating the presence of

percussive elements.

Application of a simple musically-informed rule concerning the typical structure of a

prominent rhythm allows us to immediately discard bars containing patterns that do not

have a kick-drum on their first beat. This step is implemented by examining a feature

vector (section 4.3.3) produced for the low-band of each bar, and has the desirable side

effect of also removing some bars that were not correctly delimited by the segmentation

algorithm.

Once we have a set of relevant bars, a voting-style procedure is applied to generate a

representative rhythm for a track. Each relevant bar contributes a vector for each of the

three frequency bands, and the mean vector is computed for each band. A thresholding

operation sets to 1 all the points in the mean vector that had been 1 in an appropriate

proportion of the original relevant bar vectors, 0 otherwise.

In some contexts, it may be desirable to simply use the representative rhythm vector as

a descriptor for the track. However, the intended application in this project requires that
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we carry out some form of audio fingerprinting for each track. This entails a final step

of comparing each relevant bar to the representative rhythm in order to identify any one

bar in the piece that contains the desired rhythmic pattern. A weighted Edit distance is

computed between corresponding frequency bands for each segment and the representa-

tive rhythm, where the weights correspond to the importance of patterns in that band to

the rhythmic profile. For dance music, most of the rhythmic variations that define the

styles we recognise are found in the low frequency components, so the weightings applied

to the low, mid and high bands are 3, 1 and 1 respectively.

The start and end times of the pattern that scores the lowest distance from the represen-

tative vector are chosen as the boundaries for the track’s representative, or “best” bar.

This bar is extracted from the original audio waveform and transformed into the signal

domain using mirenvelope. The resulting amplitude envelope is differentiated and half-

wave rectified before the raw numeric data is extracted from the mir object and saved to

disk storage, along with the roughly 2 second audio snippet containing the bar data itself.

4.3.3 Vector Representation

Feature descriptors are computed on a bar-by-bar basis from the differentiated, half-wave

rectified amplitude envelope of that bar. This is intended to capture the notion of “met-

rical profile” introduced in (20) and expanded upon in (16). It is ideal for these purposes

as it is small in size and very quick to compute given a bar-length waveform, but is ca-

pable of being highly descriptive in terms of rhythmic profile and can be easily compared

algorithmically to other vectors using common similarity measures.

Vectors are extracted directly from observations on the differentiated amplitude envelope.

First, we identify the locations at which the prominent peaks occur in the envelope for

each of the three auditory channels. A linearly spaced vector with 16 points (1 for each

semiquaver) is generated between 0 and the length of the bar. The actual peak locations

for each channel can then be translated into relative locations and stored in a 16-element

vector. Each element in the vector is a binary value, simply representing whether or not

there is a significant increase of energy in the channel at that point in the bar.

An example below shows the 3-channel amplitude envelope for a track and its correspond-

ing vector representation.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

low 1 - - - 1 - - - 1 - - - 1 - - -

mid 1 - - - 1 - - - - - - - 1 - - -

high 1 - 1 - - - 1 - - - 1 - - - 1 -

Figure 4: “Clap Ya Hands” - differentiated envelope, with and without peak indication

for three frequency bands. The vertical lines on the peak display graph indicate the centre

points of the 16 bar regions. Below, the generated binary feature vector corresponding to

peak placement.

4.3.4 Frequency Bands

The decision to divide each feature into 3 distinct frequency bands is guided by domain-

specific knowledge. Prominent percussive elements in electronic music tend to fall dis-

tinctly into one of the three bands recognised here, where the low band contains kick

drums, mid contains snares drums, or claps, and the high band comprises hi-hats.

Filterbank decomposition is achieved through use of mirfilterbank, which utilises a well-

established simulation of the basilar membrane introduced in (17). This representation is

found to be satisfactory in separating the three categories of percussive element, although

there is undoubtedly some room for improvement (see section 7).

4.4 Similarity Function

Choosing an appropriate similarity measure for any application depends largely on the

nature of the representation chosen to summarise each data point. In this case, each

24



track is represented by three binary strings of length 16. This feature demonstrates a

massive reduction in space required to store necessary track data, and also ensures exact

consistency of feature size across all tracks in the dataset. These properties of the feature

help facilitate straightforward comparison through application of simple binary distance

measures, such as Hamming, or Edit/Swap distance. The slightly more intelligent Edit

distance offered a small increase in classification performance over Hamming in all cases,

at an insignificant extra computational cost, and so is the distance measure chosen as the

basis for all vector similarity operations.

Similarity between two vectors is considered for each pair of corresponding frequency

bands, i.e. we compute low-low, mid-mid and high-high similarity. The value from each

of these calculations is weighted according to the user-specified parameters from the in-

terface component, before the three are summed together and returned as the distance

between the two vectors.

When computing track-track similarities, a user specified tempo range is introduced. This

check occurs before extraction of feature vectors and simply ignores any tracks that are

not within the percentage range. The permitted tempo range is by default +/- 8%,

chosen to reflect the range most commonly available to a DJ, and is inherently the range

most suited to enhancing recommendation quality (see 5.4). The other options are +/-

16, 25, 50 and 100%(no restriction), corresponding to tempo ranges available on more

sophisticated equipment.

4.5 Interface

Section 3.2 introduces the interface and the main use case that guided much of its de-

velopment. In this section, some of the most significant actions and the operations they

trigger are described in further detail.

A Matlab GUI file is the entry point for the application as a whole, On startup, the

initialisation function loads a number of important pieces of information from disk and

into memory. For example, the helper function loadFileList reads a ’\n’-delimted text

file and parses each file path to create a TrackData object, whicb is subsequently stored

in the TrackArray.
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The interface source file also contains functions that retrieve TrackData objects from the

global TrackArray, update the relevant visual components with the requested data, and

call routines to carry out analysis on tracks.

Select Files opens a file browser for the user to select files to be included in analysis,

parsing the selected file paths and adding them to the stored filelist.txt.

Analyse Selected / All Files triggers the analysis process outlined in section 3.1.2 for

1 or all files

Delete Track searches the filelist for the track name of the highlighted track, and re-

moves the entry. System needs restart for changes to take effect

Load Selected Track checks which row is highlighted in the track table and sets the

corresponding TrackData as the ActiveTrack. The track’s amplitude data for the

representative bar is accessed and plotted, resizing the axes to match the length of

the bar. Users can also load the previous or next track with corresponding buttons.

Tempo can be corrected in one of two ways. Selecting the Tempo column in the track

table for a track displays a pop-up from which the user can select any one of the

candidates produced by mirtempo. Alternatively, the user can enter a custom tempo

by loading the track then using the “Edit Track Data” button. Each of these re-

triggers the analysis process for that track using the new tempo.

Best Bar adjustments can be made incrementally with arrow nudge buttons. A user

can adjust the bar position by 1 bar at a time, or by a small, user specified value.

This value corresponds to the amount of points in the amplitude envelope, which is

typically about 5000 points in length for a 2 second audio clip. The graph display

updates as the user adjusts the position; upon pressing “Save” the offset is converted

to time in seconds and a new audio excerpt is extracted according to the new

parameters. Alternatively, “Edit Track Data” allows for manual specification of a

bar start time.

Edit Track Data provides a means for user to enter their own key parameters, including

as mentioned above Tempo and Bar start time. A third option “Beats in Bar” is

included for the rare occasion that a track does not have a traditional 4/4 meter.

Entering new parameters in this box also re-triggers the analysis process.
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Actions available to the user for a selected track include bar playback, highlighting of

peaks in the amplitude curve, and a primitive display of the feature vector. These

tools are all intended to speed up the correction process

Similar Tracks can be generated instantly with respect to the relevant parameters se-

lected on the interface. The callback function parses the specified weights and tempo

range restriction. Once a list is generated, highlighting any track in the display box

plots an overlay of the selected track’s envelope data over the amplitude data. A

user can also load a track as active from this box.
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5 Evaluation & Results

As others have noted (1; 10), establishing consistent musical ground truths tends to be

the main obstacle to truly meaningful content-based analysis and categorization. The

inability to objectively analyse such a system’s performance can be attributed partly to

a dearth of fully validated tempo and fingerprint information, and partly to fuzziness of

class boundaries, i.e. contention over what exactly constitutes a specific style or sub-

genre. The evaluation process for this project utilises a combination of objective, fully

automated tests, and semi-automated subjective tests.

Efficient evaluation of the constituent algorithms’ performance is greatly facilitated by

the overarching system framework. Matlab scripts read analysis files from disk storage

and output relevant information to a .csv file that is then subjectively evaluated against

known track information. In the case of evaluating the quality of more advanced features,

the user interface provides an intuitive means to completing an otherwise arduous task.

5.1 Dataset

As with any content-based analysis study, the choice of dataset is guaranteed to have a

profound impact on the results of the investigation. For this project, great care was taken

to curate a set of songs that accurately represented a number of well-known genres.

Genre Electro Footwork House Jungle Techno Garage Total

Count 19 22 24 23 21 22 131

The theory behind selection of tracks was to exclude more experimental works that have

significantly blurred genre boundaries. Inevitably there is still some overlap between

genres even in human categorization terms, most notably House & Techno.

5.2 Tempo

The most fundamental rhythmic characteristic and inevitably the cornerstone of all other

algorithms in the system, Tempo is the necessary first factor for evaluation. Truly ac-

curate tempo estimation is not knowledge freely available, and various algorithms are

affected to varying extents by the presence of polyrhythms (25) as well as other artistic

stylings.
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Automatically generated spreadsheets containing output from the tempo estimation algo-

rithms were updated manually to record accuracy against known tempos for the tracks.

When evaluating the two algorithms individually, the candidate with the strongest confi-

dence is used for comparison. For all detailed analyses, the estimated tempo is deemed to

be correct if within 0.2BPM either side of the tempo generated by Pioneer’s Rekordbox

software. Results for genre subsets and for the dataset as a whole are presented below,

and discussed in 6.1.

Algorithm Correct Total Accuracy (%) Mean Error (BPM)

Ellis 35 131 26.7 5.38

MIRTempo 73 131 55.7 13.2

Combined 92 131 70.23 4.612

Figure 5: Margin of Error 0.2bpm

Algorithm Correct Total Accuracy (%) Mean Error (BPM)

Ellis 93 131 71.1 7.075

MIRTempo 75 131 57.23 15.15

Combined 112 131 85.5 6.61

Figure 6: Margin of Error 1bpm

Ellis MIRTempo Combined

Genre Acc Err Tmp Acc Err Tmp Acc Err Tmp

Electro 42.11 0.24 131.58 47.37 14.74 131.95 73.68 1.02 131.95

Footwork 4.55 3.26 159.57 72.72 5.71 159.99 81.81 0.29 160

House 60 1.6 121.95 97.67 0.07 121.84 93.33 1.09 121.84

Jungle 13.79 26.65 150 45.27 109.85 20.69 26.9 27.9 131.32

Techno 42.86 2.46 128.21 85.71 0.16 127.45 85.71 0.18 127.98

Garage 22.73 0.32 131.58 18.74 16.29 121.88 36.36 0.57 131.99

Figure 7: Performance of each algorithm on each genre subset. Acc is accuracy in %.

Err is the mean error in bpm from estimated tempo to actual. Tmp is the median tempo

for each subset as predicted by the algorithm. MoE 0.2bpm
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5.3 Pattern Extraction

The next major step to be evaluated is the process of searching a track for and extracting

a 1-bar long snippet that contains a recognisable and descriptive rhythmic pattern. The

entire process consists of several algorithms, but to evaluate the output of each component

procedure against user-specified values would be impractically time-consuming and not

particularly informative.

Evaluation of this step is therefore carried out at a slightly higher-level, and gives an indi-

cation of the system’s overall capability to identify locations of salient patterns in a track,

given its correct tempo. A ground truth has to be determined somewhat subjectively for

each track individually by assessing the suitability of the bar chosen for representation.

The user interface is hugely helpful in this evaluation process, as it provides a means

to sequentially assess each track visually and aurally; the interface plots the amplitude

envelope and offers an option to play the bar from which it was extracted.

Additionally, for testing purposes, a simple command to display the generated feature

vector is included. The pattern extraction was considered successful if no adjustment is

required to produce a meaningful feature vector.

The results for each genre subset and the dataset as a whole are presented below, and

discussed in 6.2:

Genre Correct Total Accuracy (%) Median Err (s)

Electro 15 19 78.95 0.054

Footwork 14 22 63.64 1.5

House 21 24 87.5 0.544

Jungle 12 23 52.17 9.54

Techno 18 21 85.71 0.072

Garage 12 22 54.55 5.927

Overall 92 131 70.23 1.5

Figure 8: Accuracy of pattern extraction algorithm
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5.4 Content-Based Similarity

The ability (or inability) of the system to generate meaningful recommendations for a

query track is in many ways its defining quality. This aspect of the system is evaluated

with a KNN-based cross-classification technique. Track-to-track distances are computed

using the Edit distance between each pair of corresponding frequency band vectors, with

weights of 3, 1, 1 as discussed in section 4.3.2. The predicted genre for each query track

is defined as the genre that occurs most frequently among its k most similar tracks. This

method of evaluation is satisfactory as it concisely summarises the distribution of genres

among track suggestions for the dataset as a whole.

The results of track-track distances generated under 3 distinct configurations are con-

sidered for classification analysis. Firstly, distances are produced immediately after the

pattern extraction process - i.e. when no corrections have been made to the estimated

bars. Next, the distances produced from a fully corrected set of patterns is considered.

Finally, and somewhat conclusively, we analyse the suggestions provided from a fully cor-

rected set of patterns and restrained by an 8% tempo filter.

The tables below show the accuracy of classification for each of the three configurations

described above, each for a selection of values of k in between 1 and 20.

k 1 5 9 13 17 21

correct 50 57 58 64 62 60

accuracy 38.2 43.5 44.3 48.9 47.3 45.8

Figure 9: Accuracy of classification for uncorrected data

k 1 5 9 13 17 21

correct 59 67 68 66 68 71

accuracy 45 51.1 51.9 50.3 51.9 54.2

Figure 10: Accuracy of classification for fully corrected data
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k 1 5 9 13 17 21

correct 76 85 89 92 87 82

accuracy 58 64.9 67.9 70.2 66.4 62.6

Figure 11: Accuracy of classification for fully corrected data w/ tempo filter

These results show that as expected, correctly positioned bars are significantly important.

Although there appears to be a high number of incorrect predictions, understanding the

causes and implications of incorrect predictions is key to evaluating the success of the

system. Also emphasised is the impact of a tempo filter, the reasons for which can again

be derived from detailed analysis of the results.

Distribution of predictions can be visualised in the confusion matrices shown below. In

the matrices, rows correspond to actual annotated genres, and columns correspond to

predicted genres. The counts indicate the number of tracks in each genre that were

predicted as belonging to each other genre.

Elc Fwk Hse Jng Tec Grg Total

Elc 10 4 1 3 1 0 19

Fwk 2 13 1 5 1 0 22

Hse 0 0 22 1 1 0 24

Jng 0 6 1 10 1 5 23

Tec 1 0 12 0 8 0 21

Grg 2 4 7 7 1 1 22

Figure 12: Classification confusion matrix for uncorrected data
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Elc Fwk Hse Jng Tec Grg Total

Elc 9 2 3 5 0 0 19

Fwk 0 11 3 8 0 0 22

Hse 0 0 21 0 3 0 24

Jng 0 1 1 21 0 0 23

Tec 0 0 13 0 8 0 21

Grg 1 1 3 17 0 0 22

Figure 13: Classification confusion matrix for fully corrected data

Elc Fwk Hse Jng Tec Grg Total

Elc 8 0 1 2 0 8 19

Fwk 0 16 0 6 0 0 22

Hse 0 0 22 0 2 0 24

Jng 0 2 0 21 0 0 23

Tec 0 0 13 0 8 0 21

Grg 5 0 0 0 0 17 22

Figure 14: Classification confusion matrix for fully corrected data w/ tempo filter
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6 Discussion

This chapter discusses the results presented in section 5.

6.1 Tempo

From a statistical analysis of the various tempo estimations (5.2), we can note a number

of things.

Firstly, whilst the Ellis algorithm scores very low accuracies for most genres, the mean er-

ror is generally also very low. This indicates that the tempo estimations are very close to

the actual values, but the narrow margin of error used means they are recorded as failures.

This can be verified by increasing the correctness threshold to 1BPM, which drastically

increases the overall accuracy from 26.7% to 71.1%. It is in large part this property of

Ellis’ algorithm that makes it ideal to ’correct’ the values produced by mirtempo.

Mirtempo is considerably more computationally expensive than the Ellis algorithm, and

as a result produces far more precise tempo estimations, as reflected in the general accu-

racy increase over Ellis. However, mirtempo often struggles with the trickier break-beat

genres, scoring a low accuracy and high mean error, indicating that many estimations

are wildly inaccurate. The cause of this is an issue at the heart of the tempo estimation

problem, which is the difficulty introduced by polyrhythms. To help understand this,

visualize the spread of results produced for the Jungle subset.
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Figure 15: Estimated tempo of each track in the Jungle subset

The graph shows that almost all tempo estimations fall within one of the two ranges 110-

118 or 150-170bpm. This confirms that the error is down to ambiguity of interpretation

of rhythmic patterns, as the ratio between the actual and estimated tempo of all tracks

in the lower, incorrect sector is within a very small range of 1.5. The off-kilter break-

beat patterns synonymous with jungle music introduce algorithmic ambiguities that are

extremely difficult for algorithms to resolve, as is demonstrated by the similarly poor per-

formance by the two separate tempo estimation approaches evaluated. This same license

of percussive expression introduces issues with Garage music, although to a lesser extent.

To somewhat ameliorate this flaw, the combined approach works by using the vaguely

accurate but imprecise estimations of Ellis’ algorithm to pick a best candidate from those

offered by mirtempo. The evaluation shows that this produces notably superior perfor-

mance compared to the each algorithm separately, and therefore is the default choice of

tempo estimation in the system.

6.2 Pattern Extraction

The inaccurate results from the pattern extraction algorithm (5.3) can be categorized into

two distinct groups - bars extracted with incorrect phase information, and bars extracted

from unrepresentative regions of tracks. Many tracks have beat-less sections containing

low frequency components and these are regularly treated by the algorithm as candidates.

Bars extracted from these areas required large corrections ranging from 2-60 seconds, and
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the median error for each genre indicates that these issues were most prevalent in Garage

and Jungle music, the two styles most partial to bassline-containing breakdowns.

Most inaccuracies required significantly smaller adjustments anywhere in the region of

25ms to 2 seconds, and could be introduced by errors in several of the other constituent

algorithms. For example, an incorrect tempo for a track results in incorrect segmentation

and all of its bars are consequently incorrect length. This issue can be somewhat mitigated

by correcting the tempos before, although even a discrepancy of 0.3bpm (which would

not obvious to a user) can be known to cause issues with the segmentation algorithm.

Inconsistencies across tracks are inevitably the root cause of many errors. When algorith-

mically locating the position in the bar of a kick-drum, for example, consideration had

to be made for the length of the attack onset phase, which tended to differ across songs

that used varying drum samples. This value can be computed from analysis of the onset

curve output by mironsets, and so in this project is calculated and stored for each track

individually at the downbeat detection phase.

6.3 Content-Based Similarity

Analysis of the figures presented in 5.4 reveals a number of important facts regarding both

the performance of the system and the relationships between pieces of music across genres.

We can immediately conclude that the descriptor chosen to represent each track is indeed

capable to some extent of encoding important rhythmic information and subsequently

ranking and grouping collections of electronic music. This is particularly demonstrated

by the analysis presented in figures 10 and 11, where the overall classification precision is

upwards of 50%. This represents a significant increase over the random prediction value

which would be around 16 %. In addition, tracks from the more distinctive genres can be

classified with success of over 90%. To this end, particularly when filtering suggestions

through a permitted tempo range, the categorization element of the project can be con-

sidered successful.

The categorization capabilities of any content-based recommendation system that utilises

such a small range of features from the data will however always be limited. The rhyth-

mic profile introduced in this project is in some cases perfectly distinctive and in others
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completely unable to separate genres. This is best illustrated by the Garage subset, in

particular its interactions with the other break-beat genres, Electro and Jungle. Tracks

within these three genres are all found to contain highly similar rhythmic profiles, an

example of which is displayed below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

low 1 - - - - - - - - - 1 - - - - -

mid 1 - - - 1 - - - - - - - 1 - - -

high - - 1 - - - 1 - 1 - - - 1 - 1 -

Figure 16: Vector representation of a rhythm shared by Garage, Jungle, Electro tracks, as

well as other tracks from genres outside the scope of this project

The irregular kick pattern presented here, and a number of others like it are found in

many tracks across various genres and will inevitably introduce issues when assessing

straight-forward genre classification. The confusion matrix reflects this - when tempo

restrictions are not applied, Garage tracks are regularly matched with Electro and Jungle

tracks. With a tempo filter included, Garage and Electro tracks form a definitive cluster,

but Jungle is generally left out due to its significantly different tempo.

Some basic familiarity with the styles analysed here is therefore knowledge enough to

state that it is highly unlikely that such a system would be able to fully distinguish be-

tween Garage and Electro, as the two styles not only exhibit highly similar inner and

outer metrical qualities, but also tend to fall within the same tempo range. This same

phenomenon can be observed with the confusion between House and Techno.

It is important to note these attributes of the dataset when evaluating the performance of

the system. Taking this into consideration helps to portray the accuracy of suggestions in

a clearer light, as there is very little overlap between genres that are not generally known

to share rhythmic characteristics. Indeed, one of the main goals of the project was to

provide a tool capable of genre-ignorant, rhythmically-similar suggestions, rather than a

tool intended for categorization. In this aspect, the software produced absolutely fulfils

its aims.
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7 Conclusions & Future Work

The proposed feature representation shows real promise as a low-dimensional yet effective

descriptor, at least for the subset in question. This project clarifies the important con-

siderations involved in generating such vectors, and implements a number of approaches

to the various problems. The results are reasonably successful, but there is undoubtedly

room for improvement at several stages of the process.

Tempo, Segmentation, Pattern Extraction

Access to state of the art tempo estimation, such as that packaged with many existing

DJ applications, would have significant implications for the system’s performance. In

particular, the inability to compute tempo and downbeats with perfect accuracy meant

that certain tracks had incorrect bar delimitations and phase information, representing

a notable issue for the system. To clarify, although a computer can usually calculate

to an acceptable degree of accuracy the location and periodicity of beats, it is far more

complicated to algorithmically determine on which of these beats does the start of a bar

lie. The degree of severity of these innacuracies ranged from a few milliseconds to entirely

nonsensical bar suggestions. Even a phase-start inaccuracy of 100ms (i.e. around 1/16

of a bar length) can have significant implications on the validity of a feature extracted

from this bar length pattern. Improvements to this process would clearly be reflected in

the overall outcome, but significant research has been dedicated to this problem and it

remains unsolved, so the approach chosen here is satisfactory.

A potential for improvement to the segmentation process is an approach similar to that

adopted in (6), whereby the start time of every bar is determined by searching for points

within an expected range that have maximum correlation with the original bar time.

This would allow for a slightly higher error in the tempo estimation whilst retaining

performance, as the system would intelligently pick each bar length.

Frequency Decomposition

The frequency decomposition specified in (17) and implemented in (12) is thought to

be representative of auditory perception, and so should be wholly appropriate for this

investigation. However, an interesting route for a more intelligent and flexible approach

to this problem is detailed in (16). The signal is first decomposed into 24 bark bands,

before a novelty function is applied to a loudness measure on each of these bands, using
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the detected points of change to define boundaries by which to group rhythmic elements.

This approach was found to be particularly effective for electronic music by “not imposing

any constraints on the possible instrument sounds that contribute to the characteristic

rhythmic pattern”.

Vector Representation

A number of checks and adjustments are incorporated to increase robustness when gen-

erating a vector from an amplitude envelope, but could still be improved upon. A more

intelligent algorithm could recognise when the vector has been mispositioned due to an

incorrect offset in the pattern extraction stage, and adjust the resultant vector accord-

ingly. This would be very difficult to implement due to natural inconsistencies introduced

by stylistic differences between songs, but done correctly would significantly reduce the

need for correction of bar positioning.

The complexity of the vector itself could also be increased. For example, each peak could

be represented in the vector in terms of its height, rather than just its presence. Such

a representation would not only require a more sophisticated and expensive similarity

measure, but would also complicate the problem of distinguishing between attack events

and general music events. It is possible however that something like this could offer an

improvement to the performance of the conceptually simple vectors utilised in this project.

Interface

There are several enhancements that could be made to the interface. An interesting op-

tion would be to allow a user to specify a rhythm to be used for content-based retrieval,

either entered manually or recognised from tapping keys. An interactive graph display

rather than the dumb one used here would further ease the correction process. Also, an

automated option to import meta-data such as tempo or even beat times would increase

the effectiveness and simplicity of the software.

Not only does the software developed throughout this project present an effective and

meaningful way to rhythmically fingerprint pieces of electronic music, but the framework

and interface provided also offer an intuitive means for any future researcher to improve,

implement and test any of the defining operations.

39



8 Appendix

.1 Project Brief
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.2 Planned Progress (GANTT)
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.3 Actual Progress (GANTT)
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